opentext-

OpenText Vibe 4.0.8

Developer Guide

March 2024

Legal Notice

Copyright 2024 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as may be set
forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Contents

About This Manual 9
1 Vibe Developer Overview 11
Understanding the Differences between Extensions and Remote Applications 11
VibDE TeIrMINOIOgY . . ot ittt e e 12
2 Web Services Overview 13
Web Services Implementation.ot e 13
Java Wb SerViCes . . oo e 13
SampPle ClieNtS . . oo e e e e 14
AUthenticatioNn. e e e 15
HTTP Basic Authentication ACCESS (SSF) ... v v vttt ittt ettt et e et ettt et 16

Web Services Security ACCeSS (SST). . .o v vt e 16
Server ENdpoints. . ..o e e 17
Categories Of OPeratioNs . .. oottt e e e 17
Cl Nt StUDS .« o ottt e e e 18
Managing Data i e 18
Working with Java Objects i e 19
Adding Folders and the Binder Configuration Identifier. it 20
AtaChing Files . . oot e e 22
Fetching Attachments o e e 22
Adding Calendar ENriesottt e 23
Binder Pages and search_getWorkspaceTreeAsXMLt 23
Extending Vibe Web Services. e 25
3 Creating JavaServer Pages (JSPs) 27
OVerVieW Of JSP SUPPOIt . ..ottt e e e e e e e e e e 28
DIrECtOry StrUCTUNE . o et et e e e e e e e 28
ApPPlicable Pages e 29

JSPs and the Vibe DeSignersottt e e e 29
INAEXING ISSUBS . .« ottt ittt et e e et e et e e e e e 32

JSPS and Vibe Data ACCESS. . v vttt e ettt ettt e e e e e e e 33

Text Display inthe HTML Editoro ot e e e ettt et e 34
Standard STYlEs o e 34
Examples of CUStOM ENtriES. . .. oottt e e it et et ettt et et e e e 35
A JSP That Defines Only One Data Element. i e e 35

A JSP-Defined Entry (W-4 FOrm)ot e e e et e e e 38
Examples of Complex, HTML Data Types . .. oo vt ittt e et ettt et et et et e 55
Radio BULIONS. . oot e e 55

CECK BOXES « v\ vttt ettt e e e e e e e e 56
SElECE BOXES . . ot vttt e e e 56

Contents

4

4

A

Contents

Creating and Packaging Extensions for Deployment

Understanding the Differences between Extensions and Remote Applications
Creating an EXteNSIONot e e e e,
Packaging an EXteNSION i e

Examples of the Archive Format. e e e
Extension Metadata.ottt e e e
Deploying an EXLeNSION ... it e e

Deploying an Extension from the Vibe Interface i,
Deploying an Extension from the Vibe Server. i
Updating an EXteNSioNot e e e

Locating an Extension in the Vibe Directory Structurec. it
Retaining an Extension When Updating Your Vibe Software

Creating Remote Applications

Understanding the Differences between Extensions and Remote Applications
Remote Application OVEIVIEWttt e e e e e e e e e

Processing Flow for @ REmMoOte ACCESSONY. . .o v ittt ettt e et ettt ettt
Processing Flow fora Remote FOrm. it i e e ettt e e
Setting Access Control for Remote Applications. ... i
Reviewing SUpporting Source Code ou ittt e e i et et et e
Creating a Remote Application it e et e e

Reviewing the Class File i e e e et e e e
Reviewing the Servlet-Definition File. i i i
Reviewing the JSP Fileo i e e e e
Related SECHIONS . . vttt ettt e e e e

Registering a Remote Application i e e
Configuring an Accessory to Show a Remote Application
Controlling the Access of Remote Applications. i,

Web Services Operations

admin_destroyApplicationScopedToken i e
admin_getApplicationScopedToken e
binder_addBinder
binder _CopyBINAer e e e
binder_deleteBinder e
binder_deleteTago e e
binder_getBinder o e
binder_getBinderByPathName i e e e e e
binder_getFileVersions e e
binder_getFolders i e e
binder_getSubscription e
DINdEr BE TS . . ottt e e e e
binder_getTeamMembers e e e
binder_getTrashENtries it et e e e e
binder_INdeXBinder o e e
binder INdeXTree . ..ot e e e
binder_modifyBinder e e
binder_mMoVeBiNder e
binder_preDeleteBinder.

59

59
59
60
60
61
62
62
62
62
63
63

65

65
66
67
68
69
70
71
71
72
73
73
74
74
74

binder_removeFile e 98

binder_restoreBinder. e 99
binder_setDefinitions i e e 100
binder_setFunctionMembership i e 101
binder_setFunctionMembershiplnherited i 102
DNl St OWN T . ottt e e 103
binder_setSUbsCription e 104
o] T e 1T G Y= o I = 5 105
binder_setTeamMembers e e 106
DNl _tES ACCESS . ittt e e e 107
binder_uploadFile e 108
definition_getDefinitioNASXMLt e 109
definition_getDefinitionByName i e e 110
definition_getDefinitions i e 111
definition_getLocalDefinitionByName i e 112
definition_getLocalDefinitions i e e 113
folder _addENtry . ..o e e e e 114
folder_addEntryWorkflow o e 115
folder_addMIiCroBlOg oottt e e e 116
folder_addReplyo e e 117
folder _COPYENIIY .ot e e e e e e 118
folder_deleteEntry . ..ot e e 119
folder_deleteENtryTagottt ettt e e e e e e 120
folder_deleteEntryWorkflow i e 121
folder _BetENTries . ..o e e e 122
folder _getEN Iy ..o e e 123
folder_getEntryByFileName i i e e e e e e 124
folder _BetENtryTagS . o ottt et e e 125
folder _getFileVersions i e e e 126
folder_getSubscription e 127
folder_mModifyENtry e 128
folder_modifyWorkflowState i i e 129
folder _MOVEENTIY ..o e e 130
folder_preDeleteEntryot e 131
folder_remoVeFilE e e 132
folder _reSerVEENTIY . .ot e e e 133
folder restorEENtry . ..o o e e e 134
folder_SEtENtryTag . . . oottt e e 135
folder_SetRatingot e e e 136
folder_setSUbSCription i 137
folder_setWorkfloWRESPONSE i e e e e 138
folder_synchronizeMirroredFolder i e 139
folder _UNIESEIVEENTIY . . oottt e e e e e e 140
folder_uploadFile e 141
folder_uploadFileStaged i e 142
ical_uploadCalendarEntriesWithXML ot e et e i e e 144
Idap _SYNChAIL ... e e 145
Idap _SYNChUSEr ..o e e e e 146
license _getEXternalUsersot e e 147

Contents

5

6

Contents

license_getRegisteredUsSers i e e e 148

license_UpdateLiCenseottt e e 149
Migration_addBinder e 150
migration_addBinderWithXML e 151
migration_addEntryWorkflow e 153
migration_addFolderEntryt e 154
migration_addFolderEntryWithXML i i e i e e 155
migration_addReply i e e e 157
migration_addReplyWith XML e e 158
migration_uploadFolderFile e 160
migration_uploadFolderFileStaged e 162
Profile_addGroUp .. oo e 164
profile_addGroupMember e e e e 165
Profile_addUser e e e 166
profile_addUserWorkspace ...t e e 167
profile_deletePrincipalt e 168
profile_getFileVersions. i e e 169
PrOfilE O GrOUD . .ttt e e 170
profile_getGroupByNamMet e e 171
profile_getGroUupMeEmMbDErS o e 172
profile _getPrinCipalso e 173
Profile _BetUSEr .ot e 174
profile_getUserByNamettt et ettt et e e e 175
Profile _BEtUSEIS . oottt e e 176
Profile _getUsSerTeamS . ..ottt et e e 177
profile_modifyGroup e e 178
profile_modifyUser 179
profile_remoVeRile e e 180
profile_removeGroupMember e e 181
profile_uploadFile. e 182
search_getFolderENtries.o it e e e 183
SEANCH BT RAMIS . . ittt ittt et e e e e e 184
search_getWorkspaceTreeASKML i e e e e 185
SANCN _SBANCN . .ot e 186
template_addBinder e e 188
template_getTemplates e e 189
Z0NE_AddZONE .. i e 190
Z0NE_deleteZone . .. ot e 191
ZoNe_MOdITYZONE ... o e e 192
Deprecated Web Services Operations 193
o o | o] [1Y 195
AdAFOIdEIEN Iy . .ot e e e 196
AdAREPIY ot e 198
AAAUSEIrWOIKSPaCE. .« ot ittt ettt e e e e e e 200
BetAIIPIINCIPAlSASKIMIL . .ot e 201
getDefiNItiONASXIMIL . . .o e e 202
getDefinitioNCoNfiGASXIMIL. . . . ottt e e e e 203

getDefiNitioNLiSTASXIMIL e 204

getFolderENntriesASXIMIL . . . ottt e e 205
BetFOlderENtry ASKIMIL. . .ot e e 206
BetPIiNCIPAlASKIMIL . oo e 207
getTeamMembersASXML. i e e e e 208
getTeam S ASXIMIL . . e 209
EetWOrKSPaceTreEASKIML . ..ottt e e et e e e e e 210
INEXFOIIEr L .ottt e e e e e 212
MIgrateBINder . . . o e e 213
migrateEntryWorkflow. e 215
MIgrateFOlderEN Y. . oo e 217
MigrateFolderFile e 219
migrateFolderFileStaged i e 221
MIEIatEREPIY . ottt e e e 223
MOdifyFOlderENtry .. o 225
SE D I LI ONS .« . vttt e 226
setFuNnctionMembership o e e 227
setFunctionMembershiplnherited. e 229
B OW N . oot e e e 230
SEtTEAMM MBS, . ottt e 231
synchronizeMirroredFolder e e 232
UPloadCalendarENntriesot e s 233
uploadFolderFileo e e e 234
Migrating from Forum to Kablink Teaming 237
Sequence of Migration OpPeratioNnso v vttt e e e e e e 237
Migration Overwrite Operationsttt et e e 238
MIBrating USerS . o .ottt e e e e et e e e e 238
MIgrating Files. . .ottt e e e e e 239
Migrating Custom Commands and Workflow. i 239

Contents

7

About This Manual

The OpenText Vibe 4.0.8 Developer Guide presents ways to extend the functionality of OpenText
Vibe. The guide is divided into the following sections:

+ Chapter 1, “Vibe Developer Overview,” on page 11

¢ Chapter 2, “Web Services Overview,” on page 13

+ Chapter 3, “Creating JavaServer Pages (JSPs),” on page 27

+ Chapter 4, “Creating and Packaging Extensions for Deployment,” on page 59
+ Chapter 5, “Creating Remote Applications,” on page 65

+ Appendix A, “Web Services Operations,” on page 75

+ Appendix B, “Deprecated Web Services Operations,” on page 193

+ Appendix C, “Migrating from Forum to Kablink Teaming,” on page 237

Audience

This guide is intended for programmers who want to write extensions for Vibe.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this manual, visit the Vibe 4 Documentation Web site (http://
www.novell.com/documentation/vibe4).

Additional Documentation

You can find more information in the OpenText Vibe documentation, which is accessible from the
Vibe 4 Documentation Web site (http://www.novell.com/documentation/vibe4).

To access the OpenText Vibe User Guide from within Vibe, click the Settings icon, then click Help.

About This Manual 9

http://www.novell.com/documentation/vibe4
http://www.novell.com/documentation/vibe4

10 About This Manual

Vibe Developer Overview

You can add custom development to OpenText Vibe by creating either an extension or a remote
application.

+ “Understanding the Differences between Extensions and Remote Applications” on page 11

+ “Vibe Terminology” on page 12

Understanding the Differences between Extensions and
Remote Applications

Extensions and remote applications can be used to accomplish many of the same functions;
however, the way in which they are created and how they are implemented can differ dramatically.

Following are the basic differences between extensions and remote applications:

+ Extensions: You can extend the Vibe software through the use of JSP, HTML, CSS, and many
other types of files that are commonly used when designing a Web page.

For more information about how to create extensions for Vibe, see Chapter 4, “Creating and
Packaging Extensions for Deployment,” on page 59.

+ Remote Applications: You can customize the Vibe software by creating remote applications.
You can create remote applications using SOAP (Web services).

For more information about how to create a remote application for Vibe, see Chapter 5,
“Creating Remote Applications,” on page 65.

Before you create a Vibe extension or remote application, consider how you want to create it (such
as what coding language you want to use), as well as the environment in which you want your
extension or remote application to run (such as in an external Web application or Web server).

Table 1-1 depicts important technical differences between extensions and remote applications.

Table 1-1 Technical Differences between Extensions and Remote Applications

Extension Remote Application
Web Container Tomcat only Any container (for example, Tomcat,
Apache, 1IS)
Coding Language Java and JSP only Any language (for example, PHP, Ruby;,
.NET)
Web Application Must run inside the Vibe Web Runs outside of the Vibe Web
application application
Server Runs on the same server as Vibe Can either run on the same server as

Vibe (but on a separate Web
application), or on an external server

Vibe Developer Overview 11

12

Vibe Terminology

The following OpenText Vibe definitions that can assist you when adding custom development to the
Vibe software:

*

*

binder: A place such as a workspace or folder.

binder configuration ID: A number that identifies the template used to create and configure a
new workplace or folder. This number represents a set of information that Vibe uses to
establish configuration settings, such as the default view, allowable views, allowable workflow,
and workflow associations.

binder ID: A unique number that identifies a specific workspace or folder.

data item name: A tag value that maps an HTML form element to a value stored in the Vibe
database.

definition ID: A unique 32-character hexadecimal identifier that maps to a definition for a
specific type of entry. (You modify and create definitions by using the designers in the
administration portlet.) You need to specify this value when creating a new entry in a folder.

endpoint: The URL that you use to connect your client application to the Vibe server.

page: A level in the workspace hierarchy that represents a subset of binders. Most often used to
group personal workspaces into sets that are convenient for display in the user interface.
“Binder Pages and search_getWorkspaceTreeAsXML” on page 23 provides additional
information about this hierarchical level.

principal: A registered user or a group.

principal ID: A unique number that identifies a specific user or group.

Vibe Developer Overview

Web Services Overview

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

You can use Web services when creating remote applications for OpenText Vibe. For more
information about creating remote applications, see Chapter 5, “Creating Remote Applications,” on
page 65.

OpenText offers a set of operations that you can use in client programs to exchange information with
a server that is running an installation of Novell Teaming 2.0 or later.

In addition to the overview information in this chapter, see Appendix A, “Web Services Operations,”
on page 75, for reference information about the latest operations for the new interface. For
reference information about earlier Web Services operations that have been superseded by the
current release, see Appendix B, “Deprecated Web Services Operations,” on page 193.

+ “Web Services Implementation” on page 13

+ “Authentication” on page 15

+ “Server Endpoints” on page 17

+ “Categories of Operations” on page 17

+ “Client Stubs” on page 18

+ “Managing Data” on page 18

+ “Extending Vibe Web Services” on page 25

Web Services Implementation

+ “Java Web Services” on page 13

+ “Sample Clients” on page 14

Java Web Services

Vibe implements Java Web services, which provide a set of operations that client programs can use
to exchange information with Vibe. The alphabetized reference section in this documentation
provides syntax for these operations (Appendix B, “Deprecated Web Services Operations,” on

page 193).

You can view a list of available operations online:
http://1 ocal host: 8080/ ssf/ws

The latest operations are listed under the TeamingServiceV1 header, and the deprecated operations
are listed under the Facade header.

You can also access the Vibe Web Services Description Language (WSDL) file:

Web Services Overview 13

14

http://1 ocal host: 8080/ ssf/ws/ Team ngSer vi ceV1?wsdl

In the previous two examples, replace the | ocal host specification with the host and port for your
Vibe installation.

NOTE: Vibe does not currently publish its WSDL file with Universal Description, Discovery, and
Integration (UDDI) or the Web Services Inspection Language (WSIL). Use the alphabetized reference
section in this manual (Appendix A, “Web Services Operations,” on page 75) or the URL-generated
WSDL file to understand the Vibe operation interface. For reference information about earlier Web
Services operations that have been superseded by the current release, see Appendix B, “Deprecated
Web Services Operations,” on page 193.

When you make calls to Vibe Web services, there are two ways that you can implement lower-level
Simple Object Access Protocol (SOAP) calls:

+ Unzip client-side routines on the system running your application. These routines are Java
classes and other files that produce a stub. Your application can use an interface with these stub
routines, which make the SOAP calls to and from the server. See “Client Stubs” on page 18, for
more information about implementing these client-side routines on your application’s system.

+ Have your application perform the SOAP calls by using, for example, routines from the Apache
Axis toolkit.

Vibe Web services accepts and provides data by using Java objects and methods defined in the Vibe
source code. See the Open Source Community page (https://sourceforge.net/p/kablink/code/HEAD/
tree/). Although this section provides tips for locating object and method definitions, you might
want to apply a tool such as Javadoc to the sources, so that you have reference pages to assist you in
working with the Vibe objects and methods.

The primary method of learning to use Vibe Web services is by reviewing sample clients and their
source code, which are provided in the Vibe sources.

Sample Clients

Vibe provides sample clients in its product code base that can assist you in learning how to use its
Web services. The sample clients are located within the source code (https://svn.code.sf.net/p/
kablink/code/branches/4.0.1/ssf/samples/wsclient/):

/ ssf/sanpl es/ wscli ent

The following sample clients are provided. They are listed in the order of how helpful they are in
learning how to make Web service calls:

+ teamingservice-client-with-stub.bat (Teaming 2.0+): Uses client-side routines to implement a
Windows batch file for simple operations. This is the recommended method. Using this batch
file requires the installation of the client-side routines.

+ teamingservice-client-with-call.bat (Teaming 2.0+): Uses the Axis Call object when making
Web service calls, as a way to implement a Windows batch file for simple operations.

+ facade-client.bat (V1+): Uses the deprecated Web services interface.

Web Services Overview

https://sourceforge.net/p/kablink/code/HEAD/tree/
https://svn.code.sf.net/p/kablink/code/branches/4.0.1/ssf/samples/wsclient/

+ wsExport.bat and wsimport.bat (Teaming 2.0+): Takes data from a portion of the workspace
and folder hierarchy and reproduces it on another file system. These tools are not a complete
import and export facility, because they do not retain the workflow states, access-control
settings, and history of the original objects.

You can find the source files for the sample clients here:
/ ssflsanpl es/wsclient/src/org/ kablink/teanm ng/sanpl es/wsclient

The Team ngServi ceClient Wt hCal | . j ava file extends the W5Cl i ent Base. j ava file, which
is also located in the / ssf/ sanpl es/ wscl i ent/src/ org/ kabl i nk/team ng/ sanpl es/
wscl i ent directory.

Enabling the .bat clients (Windows systems only)

Before executing the sample . bat programs on a Windows system, you need to do some work in
your build to enable them.

1 Execute the bui | d Ant targetin/ ssf/sanpl es/ wscl i ent/buil d. xm by entering ant
from the command line.

To use one of the batch files:

1 Use a command line window to cd to the / ssf/ sanpl es/ wscl i ent directory.
2 Type the filename for the batch file you want to execute.

To see a list of legal commands and arguments for one of the t eam ngservi ce or f acade
batch files, type only the filename of the batch file, then press the Return key.

3 On the same line, just after the name of the batch file, type a command name and desired
arguments.

4 Press the Return key.

If the command executes successfully, Vibe displays the return value in the command line window.

Authentication

Before determining how to connect your client application to the server, it is important to decide on
the authentication method that you want to use. Vibe and its Web services support two types of
authentication:

+ “HTTP Basic Authentication Access (ssr)” on page 16

+ “Web Services Security Access (ssf)” on page 16

Web Services Overview 15

16

HTTP Basic Authentication Access (ssr)

For basic authentication, use calls from your client application to pass a username and password as
you establish an HTTP session. Then, perform SOAP calls or calls using the client-side routines. If you
want to use basic authentication, you muse use the / ssr/ secur e/ ws endpoint when connecting
to the server.

HTTP Basic Authentication is the existing transport authentication to authenticate the Web services
client. HTTP Basic Authentication uses a username and password to authenticate a service clientto a
secure endpoint. To use this authentication mechanism, use / ssr/ secur e/ ws endpoint. To enable
this service on the Vibe side, select the Enable Basic Authentication (recommended) check box during
product installation.

See “Server Endpoints” on page 17, for more information about connecting to the server.

Web Services Security Access (ssf)

For WSS authentication, you need to place the authentication information (username and password)
in the SOAP calls. If you want to use this method of authentication, use the / ssf/ws endpoint to
connect to the server.

Web Services Security (WSS) is a standard protocol from Oasis that provides a means for applying
security to Web services. Unlike security mechanisms that rely on the use of transport layer services,
WSS provides authentication at the message layer by using a SOAP header. To use this authentication
mechanism, use / ssf/ ws endpoint. The deprecated Web services operation is accessed only
through this mechanism. This service is enabled on the Vibe side by selecting the Enable WSS
Authentication (recommended) check box during product installation.

If you choose to use WSS authentication instead of HTTP basic authentication:

+ Usetheteamn ngservices-client-w th-call.bat clientand its sources to see an
example of this type of authentication.

+ You must use the / ssf/ ws endpoint (see “Server Endpoints” on page 17, for more
information).

+ You must use password-text methods.

Password-digest is still supported in Teaming 2.0 and earlier but support is dropped with
Teaming 2.1. We strongly recommended that you use only the password-text method.

On the client side of the Web services transaction, the client code uses password-text to provide a
username and password to the Web services framework, and the framework passes the password as
plain text.

On the server side, the security framework allows Vibe to retrieve the clear-text password from the
operation by using an application programming interface (API) call. Vibe applies its internal
password encryptor and compares the result with the password stored in the database for the user
when the password is retrieved.

Although it is easy to code, this method is not secure, because the password is transmitted in plain
text. Systems requiring a higher level of security should connect to Vibe over SSL.

To use this service with the t eam ngservi ce-client-w th-call. bat, edit the script and set
the value of the - Daut hrret hod switch towss_t ext .

Web Services Overview

See “Server Endpoints” on page 17, for more information about connecting to the server.

Server Endpoints

An endpoint is the URL that you use to connect your client application to the Vibe server. Depending
on the authentication method you want to use and other factors, you must choose one of the
following five endpoints to specify in your client application:

+ [ssf/ws/TeamingServiceV1: Use this endpoint if you want to use WSS authentication with the
latest Web services operations. See “Authentication” on page 15.

+ [ssf/ws/Facade: Use this endpoint if you want to use the deprecated Web services operation.
This endpoint requires WSS authentication.

+ [ssr/secure/ws/TeamingServiceV1: Use this endpoint only if you are using HTTP Basic
Authentication with the latest Web services operations.

+ [ssr/token/ws/TeamingServiceV1: Use this endpoint when you are making a Web services call
as a remote application.

+ [ssr/ws/TeamingServiceV1: Use this endpoint when you want to access Vibe as an anonymous
user (not specifying any username or password).

Categories of Operations

To assist you in locating the operation you need to perform, the name of each operation is prefaced
with its category name. For example, one category is called f ol der, and one operation within that
category is f ol der _get Entry.

The following categories of Web services operations are available:
+ binder: Operations that are specific to workspaces, common to workspaces and folders, or that
are to be applied to the workspace tree beginning at a specific node in the tree.

+ definition: Operations for obtaining and using definitions. Definitions are created by using the
designers within the Vibe Ul.

+ folder: Operations that affect only folders and their contents (entries and comments).
+ ical: The operation that adds a calendar entry.

+ Idap: Operations that work with LDAP data.

+ license: Operations used for license compliance.

+ migration: Operations that assist migration from the SiteScape Forum product to Vibe. See
“Migrating from SiteScape Forum or Other Collaboration Software” in “Upgrade” in the
OpenText Vibe 4.0.8 Installation Guide.

+ profile: Operations affecting users and groups.

+ search: Operations that assist in locating information based on criteria other than the defined
type.
+ template: Operations that create workspaces and folders, or that get lists of available

templates. (To create a completely configured folder, use t enpl at e_addBi nder and not
bi nder _addBi nder .)

Web Services Overview 17

18

+ zone: Operations that work with different Vibe starting points within the same installation.
Each starting point contains its own unique workspace hierarchy.

Client Stubs

A stub is a proxy on the client. The stub code performs SOAP calls to the server. Vibe provides
pregenerated Java stub classes that are included in the Kablink Vibe Web Services Java client library.
To obtain the Kablink Vibe Web Services Java client library, see “Working with Java Objects” on
page 19.

The following example is the del et eFol der Ent r y method defined in the sample Java class

Team ngServi ced i ent Wt hSt ub. j ava file. The Team ngServi ced i ent Wt hSt ub. j ava
file makes SOAP calls to Vibe through the use of the pregenerated Java stub classes. This method
uses the folder_deleteEntry Web services operation to delete an entry from Vibe. This code assumes
that your client is running on the same machine that is running the Vibe server (localhost). It uses
the Basic Authentication mechanism for authentication.

private static final String TEAM NG SERVI CE_ADDRESS BASIC = "http://
| ocal host : 8080/ ssr/ secur e/ ws/ Team ngServi ceV1l";

private static final String USERNAME = "admi n";
private static final String PASSWORD = "test";

public static void del eteFolderEntry(long entryld) throws Exception {
Teani ngSer vi ceSoapSer vi ceLocat or | ocator = new
Teamni ngSer vi ceSoapSer vi ceLocat or () ;

| ocat or. set Teani ngSer vi ceEndpoi nt Addr ess(TEAM NG_SERVI CE_ADDRESS BASI C) ;
Teani ngSer vi ceSoapBi ndi ngSt ub stub = (Teani ngServi ceSoapBi ndi ngSt ub)
| ocat or. get Teamni ngServi ce();
WebServicedientUtil.setUserCredential Basi cAut h(stub, USERNAME,
PASSWORD) ;

stub. fol der_del eteEntry(null, entryld);

Systemout.printin("ID of the deleted entry: " + entryld);
}

Managing Data

Some operations are less intuitive than others for messages. This section provides additional
information for those operations and includes the following subsections:

+ “Working with Java Objects” on page 19

+ “Adding Folders and the Binder Configuration Identifier” on page 20

+ “Attaching Files” on page 22

+ “Fetching Attachments” on page 22

Web Services Overview

+ “Adding Calendar Entries” on page 23
+ “Binder Pages and search_getWorkspaceTreeAsXML” on page 23

Working with Java Objects

The Web services operations often pass and return data within model objects as defined within the
Kablink Vibe software. This is beneficial because it cuts down on the amount of code required to
prepare, send, receive, and interpret data. For example, parsing XML strings requires more coding.
For users who develop Web services client applications in Java, Kablink Vibe provides a client-side
library that they can use directly for added convenience. Users who develop Web services client
applications in a language other than Java must rely on their own tools for understanding and coding
the Kablink Vibe Web interfaces that have been defined and exposed by the corresponding WSDL.

Regardless of the language and tools that are used to develop Web services applications, it is helpful
to familiarize yourself with some of the Vibe source code in order to understand the model objects
and methods that are used to pass parameters and receive returned data.

To obtain the Kablink Vibe Web Services Java client library, download the Kablink Vibe product
distribution tar/zip file from the Kablink Web site, and expand file in a directory. This product
distribution tar/zip file contains t eani ng- 2. *. *-wscl i ent . zi p. This file contains:

+ The Axis-generated Java source and class files for the client side stubs and model classes.

kabl i nk-t eam ng-wsclient.jar
+ Search utility classes that aid in building search queries.
kabl i nk-team ng-util-search.jar

+ All third-party libraries needed on the client side to run generated stubs.

The kabl i nk-t eam ng-wsclient.j ar file contains the Java source that defines model objects
that are passed between the Web services client and the Vibe server as either input arguments to or
return values from various Web service operations. These model classes are located in the or g/
kabl i nk/t eam ng/ cl i ent/ws/ nodel Java package. A significant number of the model classes
build upon the base class Def i nabl eEnti ty. The Team ngSer vi ceSoapBi ndi ngSt ub. j ava
class is the main stub class that application programs need to interact with in order to invoke various
Web service operations.

To access Java sample programs that use the Kablink Vibe Web Services Java client library, download
the Vibe source code from the Open Community Source page (https://sourceforge.net/p/kablink/
code/HEAD/tree/) and examine the source code and scripts located in the / ssf/ sanpl es/

wscl i ent directory. For example, the Teani ngServi ced i ent Wt hSt ub. j ava classin/ ssf/
sanpl es/wsclient/src/org/ kablink/team ng/ sanmpl es/ wscl i ent demonstrates how to
use the supplied stub and model classes to invoke Vibe Web services operations with minimum
coding effort.

The kabl i nk-t eam ng-wsclient.jar isalso found with in the source tree in the / ssf/ ws-

cl i ent directory. To implement a client-side application of your own, all of the necessary libraries
must be defined as being in your class path. When the sample program is runin/ ssf/ sanpl es/
wscl i ent, the accompanying bui | d. xm Ant build script performs this function for you. It can be
viewed as a template.

Web Services Overview 19

https://sourceforge.net/p/kablink/code/HEAD/tree/

The names of the Web services operations use categories to organize the operations so they are
easier for you to locate and understand. In general, the categories describe an item within Vibe that
is the focus of the operation, such as folder, entry, binder, or attachments.

Adding Folders and the Binder Configuration Identifier

When you add a fully configured folder such as template_addBinder (page 188), you need to specify
a binder configuration identifier, which identifies the template used to configure a folder of a

particular type. For example, the blog-folder template specifies settings used to configure a new
blog folder.

To review the blog-folder template:

1 Login to Vibe as the Vibe administrator.

2 Click the Administration icon E in the upper-right corner of the page.
The Administration page is displayed.

3 Under Management, click Workspace and Folder Templates.

4 In the Standard Templates section, click Blog.

5 Click Manage This Target > Configure.
The Configure Default Settings page is displayed.

20 Web Services Overview

Configure Default Settings

Current Folder; Blog

Blog

Define a simple URL far this folder ar workspace 0

Currently defined URLs

Delete the sele

Drefine URL
hittpz/ipenroddteaming/

adrmin |

Definition inheritancef’I

Mot inheriting definition settings.

Inhetit definitions?

Ovyes @ no Apply.

Allowed Views 0

Blog (_blogFalder)

O Calendar {_calendarFolder)

Discussion - Movable Columns (_discussionFolderTahle)
Discussion - Standard View {_discussionFolderList)
[Files (_liararFaldery

O Guestbook {_guesthookFaolder)

| Micro-Blog (_miniBlogFolder

[Milestanes {_milestoneFolder)

[irrored Files {_mirraredFileFalder)

[Fhato Album {_photaFolder)

O Survevs {surveyFolder)

[Tasks (_taskFolder)

[wiki _wikiFolder)

The following configuration settings are available in the template:
+ Definition inheritance
+ Allowed Views
¢ Default View
+ Default Entry Types
+ Workflow Associations
+ Allowed Workflows
At the time of this writing, Vibe does not provide a message that you can use to retrieve the binder
configuration identifier for a particular type of folder. Use the following procedure to obtain the
binder configuration identifier for the folder you want to create:
1 View any workspace or folder.
2 Click Manage > Add folder.

3 While viewing the Add new folder page, use your browser to view the HTML source code for the
page.
4 Search for the type of folder you want to create (for example, discussion, blog, or calendar).

Web Services Overview 21

22

5 Inthei nput HTML tag that creates the radio button for that type of folder, note the
name" " bi nder Confi gl "d and val ue"=nnn" pair of tag elements.

The number specified by the val ue element is the binder configuration identifier of the folder
you want to create.

The following figure shows an example of the binder configuration information for a blog folder, as
found in the HTML source for the Add new folder page:

Figure 2-1 The Binder Configuration Identifier in Source Code

<trr<td wvalign="top" nawrap{fgaput type="radio”™ name="binderConfigId" value="1i?3)

onClick="ss showlAddBinderOptions()"
'r hap: enbsp: snbsp: </ td>
<td wvalign="top" style="padding-bottom: fpx;">

A blog folder iz a forum where entire entries are displayved in rewverse chronolog
» based on when they were created. Blogs typically provide information on a particu
from an individual or smwall group of authors. Cptionally, the hlog folder can be

ired 2en that s larcer oroiin cAn mabe commments nn the entries nneted bt the nrdioins

Attaching Files

In OpenText Vibe, attachments are files that are associated with an entry. An entry can have more
than one attached file.

For Web services, an attachment is a file exchanged in conjunction with an operation being passed
between the client and server. Vibe recognizes only the first file attachment to an operation being
sent to the server and ignores all other attachments.

To attach more than one file to an entry in Vibe, you must use one of the upload operations multiple
times. For example, to attach 17 files to an entry in Vibe, you must use f ol der _upl oadFi | e 17
times. Your client source code establishes where in the file system it finds or places files used as
attachments to messages.

The f ol der _upl oadFi | e operation requires that you pass a data item name. This identifier maps
to the value specified in the nane attribute of the i nput HTML tag used to upload the file; this value
is also used in a hi dden HTML tag that communicates values between the HTML form and the Vibe
database.

To upload a file into the standard form element used to contain attachments, specify
ss_attachFi | e as the data item name. If you are uploading files into a custom form element,
create an instance of that custom entry, use an operation to get the name of the hidden field, then
use the name when attaching files to the entry you actually want to affect.

Fetching Attachments

When you use f ol der _get Ent ry to obtain information about an entry, you use a Boolean
parameter to indicate if you want the entry’s attachments. If you specify that you do want the
attachments, your client establishes where on its system it places the attached files.

Web Services Overview

Adding Calendar Entries

When you pass the i cal _upl oadCal endar Ent ri esW t hXM. operation to the server, the Web
services framework uses an XML formatted string of iCal data passed as the second parameter to the
operation (<doc><ent ry>i Cal dat a</ entry></doc>).

Binder Pages and search_getWorkspaceTreeAsXML

When you use sear ch_get Wr kspaceTr eeAs XM to obtain information about the hierarchical
workspace tree, OpenText Vibe returns XML formatted information about nodes in the tree, within
the levels of the hierarchy you specify. Each node in the tree is a binder, which is typically a place (a
workspace or folder). Sometimes, the XML element returned for a node is called a page.

The following graphic shows the workspace tree, which is expanded to show five levels of the
workspace hierarchy:

Figure 2-2 Workspace Hierarchy Levels as Seen in the Ul

=- [warkspaces 1
: ..@Global workspaces 2

@Engineermg workspace 3)

@Marketing workspace

() Admin, Mary (adminy 3
By Teamn workspaces

In the graphic, each of the workspaces and folders are nodes in the workspace tree. The Workspaces
workspace is the only binder at level 1. Level 2 binders include Global workspaces, Personal
workspaces, and Team workspaces. The only binder shown at level 3 is the Corporate web site
binder. Level 4 binders include folders and the December 2008 redesign workspace. The Calendar
binder is located at level 5. If a binder has a plus sign next to it (for example, both the Global
workspaces and Personal workspaces binders are preceded by plus signs), it means that there are
hierarchy levels of binders that are not displayed in the UL.

If you use sear ch_get Wor kspaceTr eeAsXM. to get one level of the tree starting at the
Workspaces node, Vibe returns information about Global workspaces, Personal workspaces, and
Team workspaces.

As mentioned, some nodes in the tree are pages:

Web Services Overview 23

24

Figure 2-3 Pages as They Appear in the Ul

EI--@Aspen Demo
--@Globalworkspaces
H@ Personal workspaces

------ abney - biggs

bill cutler

de grant

green ira

jdindono lauder

laws nowicki
rees

steensgaard

wilkes

-5 Team workspaces

The / ssf/ web/ docr oot / WEB- | NF/ cl asses/ confi g/ ssf. properties file containsa
property called wsTr ee. maxBucket Si ze, which, by default, is set to 25. This means that the
maximum number of sub-workspaces allowed is 25. If a folder or workspace has more subplaces,
Vibe creates virtual buckets called pages. Each line in Figure 2-3 on page 24 corresponds to a page.
The Personal workspaces workspace has two pages.

When you use sear ch_get Wr kspaceTr eeAsXM. to retrieve information about nodes in the
workspace tree, it can return more than one hierarchical level as you specify, unless it encounters a
page. To expand the tree beyond a page, you must call sear ch_get Wir kspaceTr eeAs XM again,

pass the binder identifier of the page, and pass the number of levels beyond the page you want to
retrieve.

Consider the following:

Figure 2-4 A Page Containing Sub-Workspaces

EI@ Fersonal workspaces

@--abney © biggs

El--bill_-_cutler

= {bil

- [Bilimers, Mever (billmers)
@ Bill Ramsey
@Elliss.‘.".filliam (wbliss)

ﬁ Blume, Andreas (ahlume)

' EéElradburn, Martin {(mbradburn)
) Brantz, Kristin (kbrantz)

The wong//zeeman page contains workspaces. The workspaces listed (Wong, Charles (cwong), and
Zeeman, Skip szeeman)) are one level beyond the page.

When you receive page information as a node in the workspace tree, you receive page and t upl e
attributes. For example, page""" 2 and pageTupl e"=char| es_wong (cwong)// ski p_zeenan
(szeeman) ". To obtain information about the contents of this page, you need to specify the
identifier of the page’s parent, the number of hierarchy levels you want expanded, and a
concatenation of the page number and tuple values, as shown in this example:

sear ch_get Wor kspaceTreeAsXM. 24 3 "2//charl es_wong//ski p_zeeman"

Web Services Overview

This code begins at binder number 24, accesses page number 2, and returns two hierarchical levels
of data for all users between Charles Wong and Skip Zeeman.

Given the structure of the Vibe pages and how Web services returns tree data, it is easiest to retrieve
page data in this way. However, if you choose, you can actually retrieve paged tree data regardless of
page number. To do this, specify any page number (Vibe actually ignores it), and specify a tuple in
the correct order in which it appears in the tree, even if the set of users crosses pages. Vibe returns
hierarchical information for all users in between the tuple values. However, if the number of
returned nodes exceeds the value specified in the ws Tr ee. mnaxBucket Si ze property (by default,
25 users), Vibe pages the data.

Finally, if you want to see all tree information without any page specifications, specify - 1 as the
value of the hierarchy levels you want returned.

Extending Vibe Web Services

Because Kablink Vibe is open source software, you have the source code that implements our Web
services, and you can extend it. However, we invite you to operate within the spirit of an open
source community by participating in the Kablink Vibe online community (https://sourceforge.net/
p/kablink/code/HEAD/tree/), sharing your code with others, and working with the OpenText
engineers to incorporate your Web services extensions into the base product. In this way, you make
the product and community stronger, and you avoid doing work that might need to be redone in
future versions of Kablink Vibe because of engineering changes.

Of course, whether you participate in the community or upgrade to future versions of the software is
up to you. Regardless of your decision, Kablink Vibe includes an example that provides a structure
that enables users of all versions of our software to extend our Web services in the most optimal
way, minimizing work that you might need to do to maintain the extensions for every upgrade.

Kablink Vibe includes an extended Web services example, which adds the

fol der _get Fol der Ti t | e operation to the base Vibe web services, and also adds the

get Fol der Ti t| e command to the t eam ngservi ce-client-w th-call.bat sample client.
The source code for the extension is located in this directory and in its subdirectories:

| ssf/ sanpl es/ ext endedws

This directory contains the r eadne. t xt file, which provides simple directions for establishing the
extension.

Web Services Overview 25

https://sourceforge.net/p/kablink/code/HEAD/tree/

26 Web Services Overview

Creating JavaServer Pages (JSPs)

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

You can use JavaServer Page (JSP) files when creating extensions for Vibe. For more information
about creating extensions, see Chapter 4, “Creating and Packaging Extensions for Deployment,” on
page 59.

+ “Overview of JSP Support” on page 28
+ “Examples of Custom Entries” on page 35

+ “Examples of Complex, HTML Data Types” on page 55
JavaServer Pages (http://en.wikipedia.org/wiki/JavaServer_Pages)

JavaServer Pages technology (http://java.sun.com/products/jsp/)

NOTE: The method of specifying separate JSP files for the form, view, and mail was the primary
method of applying JSP applications for versions of OpenText Vibe prior to 2.0, and this method is
still supported in Teaming 2.0 and later. However, Teaming 2.0 and later added support for specifying
a single JSP file for the form and then inheriting the JSP in the view. Also, Teaming 2.0 and later
supports replacing standard items (such as the title or description) with JSP files.

This topic describes the application of JSP customizations in OpenText Vibe.

Using form and view designers, you can add standard HTML or Vibe elements (for example, a text
box or form elements to upload attachments) to standard entries. As another option, you can create
new types of entries (for example, a paid-time-off-request entry, a resume-processing entry, a
document-review entry, and so on). When you limit a folder to a custom task, then you created a
dedicated application.

Using Vibe as an application-development platform is powerful. However, given the tools described
in this guide so far, you may have noticed some limitations. For example, when you use the designers
to create custom entries, you are allowed some control over the position of the custom elements on
the page, but many formatting decisions are left to the Vibe software. If your application requires a
level of formatting control that is difficult or impossible to achieve using the designers, you can use
JSPs to enhance your customization.

This topic includes these sections:

+ “Overview of JSP Support” on page 28
+ “Examples of Custom Entries” on page 35

+ “Examples of Complex, HTML Data Types” on page 55

NOTE: Although it includes examples of JSP tagging, it is beyond the scope of this topic to teach
general tagging syntax and use cases for JavaServer Pages.

Creating JavaServer Pages (JSPs) 27

http://en.wikipedia.org/wiki/JavaServer_Pages
http://java.sun.com/products/jsp/

28

Overview of JSP Support

This section explains the relationship between the OpenText Vibe Ul and the content of the JSP files,
and provides other information to assist in your use of JSP customizations. If you prefer to learn by
doing, you may want to skip this section and review the examples (see “Examples of Custom Entries”
on page 35).

This section includes these subsections:

+ “Directory Structure” on page 28

+ “Applicable Pages” on page 29

+ “JSPs and the Vibe Designers” on page 29

+ “Indexing Issues” on page 32

+ “JSPs and Vibe Data Access” on page 33

+ “Text Display in the HTML Editor” on page 34
+ “Standard Styles” on page 34

Directory Structure

In the OpenText Vibe implementation of JSP-based customizations, you specify the JSP files using the
designers, which are located in the administration portlet.

The designer interface expects to find the JSP files relative to this location within the server directory
structure:

/ VEB- | NF/ j sp/ cust om j sps
Vibe ships sample JSP customizations in this directory:
/ VEB- | NF/ j sp/ cust om j sps/ sanpl es

By default, Vibe includes in this directory three files that you can use to practice applying a small JSP
customization to a single element within a page:

customj sp. htni

customjsp_formhtnm
custom jsp_view htm
customjsp_mail.htmn

A section that follows describes how to apply this sample customization and what it looks like in the
Vibe user interface (Ul). For more information, see “A JSP That Defines Only One Data Element” on
page 35.

Because the / cust om j sps directory contains JSP files for all customizations in the installation,

OpenText strongly recommends that you create subdirectories for each customization. For more

information, see “Enabling Custom JSPs to Be Used on Your Vibe Site” in the OpenText Vibe 4.0.8
Administration Guide.

For example, a section that follows shows sample JSPs that produce almost the entire bodies of the
form and